If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+9x=5
We move all terms to the left:
3x^2+9x-(5)=0
a = 3; b = 9; c = -5;
Δ = b2-4ac
Δ = 92-4·3·(-5)
Δ = 141
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-\sqrt{141}}{2*3}=\frac{-9-\sqrt{141}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+\sqrt{141}}{2*3}=\frac{-9+\sqrt{141}}{6} $
| r/5+95=4r | | 2/3x+-7/12x=4 | | 2/5=1/5(x-1/4) | | 3x2-16x+13=-4 | | 2/3x=7/12x=4 | | 10-(x-9)=4(x+5) | | |5y+2|+6=4 | | 49=40+c | | -3.5+x/2=-1.05 | | 1/3(12f-3)=4 | | 7-8b=7b+112 | | 23n+28-3n=12n-18 | | -19(y+1)+6(4y-6)=4(y-6)+12 | | 4(2x-2)+4=8x-4 | | 7x+3+6x+7=120 | | -(1+3x)-7(5x-6)=79 | | 4x+4*5=54 | | 15x─51=─3x+12 | | 42=-7/8w | | 4^x+2^(x+1)=24 | | (3/x-3)-(2/x)=(3x/x^2-3x) | | -(1+x)-7(5x-6)=79 | | 20n+100=30n | | 4/5x=8/5 | | 5x-9-4x=10+6 | | 50=7+t | | 4b=3b/10+148 | | f+13=2 | | 1z2+3z-7=1z | | 2y-4y+7=0 | | X(x-9)+14=x(x+5) | | j+11=-3 |